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Abstract. Bitmap indices are efficient data structures for processing
complex, multi-dimensional queries in data warehouse applications and
scientific data analysis. For high-cardinality attributes, a common ap-
proach is to build bitmap indices with binning. This technique partitions
the attribute values into a number of ranges, called bins, and uses bitmap
vectors to represent bins (attribute ranges) rather than distinct values.
In order to yield exact query answers, parts of the original data values
have to be read from disk for checking against the query constraint. This
process is referred to as candidate check and usually dominates the total
query processing time.
In this paper we study several strategies for optimizing the candidate
check cost for multi-dimensional queries. We present an efficient candi-
date check algorithm based on attribute value distribution, query distri-
bution as well as query selectivity with respect to each dimension. We
also show that re-ordering the dimensions during query evaluation can
be used to reduce I/O costs. We tested our algorithm on data with vari-
ous attribute value distributions and query distributions. Our approach
shows a significant improvement over traditional binning strategies for
bitmap indices.

1 Introduction

Large-scale data analysis of data warehouses and scientific applications requires
efficient index data structures to cope with the increasing size and complexity
of data. Bitmap indices are often used for querying large, multi-dimensional,
read-only data stores. Due to its efficiency, this technique was also implemented
by the major commercial database vendors.

The simplest form of bitmap indices works well for low-cardinality attributes,
such as “gender”, “types of cars sold per month”, or “airplane models produced
by Airbus and Boeing”. However, for high-cardinality attributes such as “dis-
tinct temperature values in a supernova explosion”, simple bitmap indices are
impractical due to large storage and computational complexities. In this case,
bitmap indices are built on attribute ranges (bins) rather than on distinct at-
tribute values. The advantage of this approach is that a lower number of bitmap



vectors is required. On the other hand, parts of the original data (candidates)
have to be read from disk in order to get exact query answers. This process is
called candidate check.

An example of a bitmap index with bins is given in Figure 1. Assume that we
want to evaluate the query 37 ≤ x < 63. Bins 1, 2 and 3 contain the relevant data
values. However, Bins 1 and 3 are edge bins since they contain also irrelevant
values. Answering this query involves checking the values on disk corresponding
to the four “1-bits” in these two columns. In this example only one of the four
values qualifies, namely, 61.7. We call this additional step the candidate check.
As we can see from this example, the cost of performing a candidate check on
an edge bin is related to the number of “1-bits” in that bin.

Fig. 1. Range query 37 ≤ x < 63 on a bitmap index with binning.

In previous work we have shown that the candidate check is the major bot-
tleneck of bitmap indices with binning. In this paper we use a dynamic program-
ming algorithm, called Dynamic-Bin, for optimizing one-dimensional queries pre-
sented in [10] to achieve an efficient multi-attribute binning strategy. The key
idea in Dynamic-Bin is to use query workload and data value distribution statis-
tics in order to calculate the optimal location of bin boundaries. This is done
by placing relatively more bins in regions of the data ”heavily hit” by queries or
containing a large fraction of the data.

The main contributions of this paper are:

– We study optimization issues related to multi-dimensional queries with bitmap
indices. We show that the candidate check is the dominant part in query
evaluation and introduce an optimization strategy based on attribute value
distribution, query distribution as well as query selectivity with respect to
each dimension.

– We show that re-ordering the dimensions during query evaluation can be
used to further reduce I/O costs.



– We provide detailed experimental results on data with various attribute value
distributions and query distributions. The results demonstrate a significant
improvement over traditional binning strategies for bitmap indices.

2 Related Work

Bitmap indices are used for accelerating complex, multi-dimensional queries for
On-Line Analytical Processing and data warehouses [2] as well as for scientific
applications [11]. They were first implemented in a commercial DBMS called
Model 204 [8]. Improvements on this approach were discussed in [9].

Various bitmap encoding strategies for low-cardinality attributes are pre-
sented in [1, 14]. In order to overcome the storage complexity of bitmap indices,
bitmap compression algorithms were evaluated in [4]. More recently a new com-
pression scheme called Word-Aligned Hybrid (WAH) [12] was introduced. This
compression algorithm significantly reduces the overall query processing time
compared to existing algorithms.

A binning scheme for bitmap indices on high-cardinality attributes was dis-
cussed in [13]. This idea was extended and successfully applied for large-scale
scientific data [11]. The authors demonstrated that bitmap indices with bin-
ning can significantly speed up multi-dimensional queries on high-cardinality
attributes.

In [5] a methodology for building space efficient bitmap indices is introduced
for high-cardinality attributes based on binning. The work in [5] focuses on point
(equality) queries rather than range queries discussed in this paper. Similar to
our approach, an optimal dynamic programming algorithm is used for efficiently
choosing bin ranges. Our approach greatly reduces the complexity of the algo-
rithm by proving that only query endpoints need to be considered as potential
locations for bin boundaries rather than all possible values of the attribute as in
[5].

The literature on histograms is partially related to bitmap indices. The opti-
mal construction of range histograms is discussed in [6, 3]. The main difference is
that for bitmap indices precise answers are required and therefore the objective
is to minimize disk access costs to edge bins. However, in the histogram case,
some statistical techniques can be used to estimate errors without actual access
to original data on disk.

3 Preliminaries

In order to make the paper self-contained, we summarize here our results for
optimizing the candidate check for a single attribute. Detailed proofs can be
found in [10]. Assume a dataset D has N records with a single attribute A. For
simplicity we will assume that each value of the attribute is an integer in the
range [1, n]. We are also given a collection of range queries Q such that each
q ∈ Q defines a range q = [lq, uq) open on the right (i.e., it includes the points
lq, lq + 1, ..., uq − 1) and is associated with a probability pq reflecting its relative



popularity. The points lq ∈ [1, n] and uq ∈ [2, n+1] are called endpoints of query
q. A bitmap index on A is built by partitioning the range [1, n] into bins with one
bitmap (consisting of N bits) associated with each bin as previously described.
An integer constraint k, specifies the maximum number of bins allowed, i.e.,
it is required to partition the range [1, n] into k successive sub-ranges (bins)
B =< b1, b2, ..., bk >. This is done by choosing k−1 integer bin boundary points
xi where 1 < x1 < x2 < ... < xk−1 < n + 1 . The sub-ranges associated with
bins bi are all open on the right and defined as follows:

b1 = [1, x1)
bi = [xi−1, xi) for 2 ≤ i ≤ k
bk = [xk−1, n + 1)

A bin b ∈ B is defined as an edge bin for query q if the range defined by the
query q overlaps some part of the range defined by bin b but not its whole range
i.e., q ∩ b 6= ∅ and q ∩ b 6= b. In general, a query may have 0, 1, or 2 edge bins.

Fig. 2. Query endpoints and bin boundaries. Horizontal lines represent query ranges.
Dotted vertical lines mark query endpoints.

In Figure 2 a set of 10 range queries and a binning into 4 bins is shown. In this
example query q3 has no edge bins since both its endpoints fall on bin boundaries.
Each of the queries q4, q5, q6, q7, q10 has 1 edge bin and each of the queries q1,
q2, q8, q9 have 2 edge bins. As explained earlier, when query q is specified, a
significant fraction of the I/O costs it incurs is related to the number of data
pages we need to read in order to perform candidate check on each of its edge
bins. For a given bin b, let E(b) denote the set of queries that have bin b as an edge
bin. For example, in Figure 2 E(b1) = {q1, q2}; E(b2) = {q1, q2, q4, q5, q6, q7, q8};
E(b3) = {q9}; E(b4) = {q8, q9, q10}.

Let nb denote the number of data values that fall into the range defined by
b, this is also the number of “1-bits” in the bitmap corresponding to b. Based
on the usual assumption that records are distributed uniformly across pages
and assuming that the total number of pages occupied by attribute A is P , the
expected number of disk pages that contain data values that fall in the range
defined by bin b denoted by Pb, satisfies [9].

Pb = P (1− (1− 1
P

)nb) ≈ P (1− e−
nb
P ) (1)



The expected I/O cost of answering the queries in Q when an attribute range is
partitioned by the set of bins B is defined as

Cost(Q,B) =
∑
b∈B

Pb

∑
q∈E(b)

pq (2)

The inner sum computes the total probability of all the queries that use a given
bin b as an edge bin. This is then multiplied by the I/O cost of the bin (expected
number of pages) and summed over all bins.

The problem we wish to solve, OptBin is defined as follows:
Given a dataset D with one attribute, a set of range queries Q and a constraint

k on the number of bins, find a binning Bk
opt of the attribute range [1,n] into k

bins that minimizes the total I/O cost of candidate check.

4 The Multi-Attribute Candidate Check Problem

In this section we present results for the multi-attribute candidate check problem
and its relationship to the single attribute case. We will start with some defini-
tions. Let D be a dataset with N records defined over t attributes A1, A2, ..., At.
Each record R ∈ D has the form R = v1, v2, ..., vt where vi represents its value
with respect to attribute Ai. Let us assume that the range of possible values for
each attribute Ai is [1, n]. A set Q of multi-attribute range queries is given where
a query q ∈ Q defines an intersection of t ranges and has the form q =

⋂t
i=1 ri

where ri = [liq, u
i
q) defines the range of permissible values for attributeAi (a range

ri is commonly omitted from q in the trivial case that it includes all permissible
values of the attribute, i.e., liq = 1 and ui

q = n). A record R = v1, v2, ..., vt sat-
isfies the range ri if the value vi falls in this range, i.e., vi ∈ [liq, u

i
q). It satisfies

the query q if it satisfies all its ranges, i.e., vi ∈ [liq, u
i
q) for1 ≤ i ≤ t.

In order to get a handle on the issues involved with multi-attribute candi-
date check problem, let us first assume a bitmap index for each attribute was
constructed according to some binning strategy. Given a query q and such a
collection of bitmap indices, each range ri defines 0, 1 or 2 edge bins in its re-
spective bitmap index. A simple algorithm for answering a query q, which we
call Simple-CC, is to perform an independent candidate check algorithm for each
range ri = [liq, u

i
q) using the bitmap index built for attribute Ai and present the

result in a bitmap b(ri) with N entries. A “1-bit” in position j of b(ri) repre-
sents the fact that the jth record in D satisfies [liq, u

i
q). This is then followed by

performing a Boolean AND operation on all the b(ri)’s to obtain the final result.
The algorithm Simple-CC will require accessing each value in the edge bins of
all attributes. Note that the cost for Simple-CC is independent of the order in
which the candidate checks are performed on the various attributes.

The Simple-MultiOptBin (SMOB) problem which generalizes OptBin is de-
fined as follows:

Given a multi-dimensional dataset D, a set of range queries Q and a con-
straint k on the total number of bins, find t integers k1, k2, ..., kt where k =



Fig. 3. Multi-attribute bin selection

∑t
i=1 ki and locations for bin boundaries such that ki bins are allocated for the

bitmap index for attribute Ai and the total expected I/O cost of candidate check
using Simple-CC is minimized.

We can show that for each fixed selection of t integers k1, k2, ..., kt where
k =

∑t
i=1 ki and ki bins are allocated to attribute Ai, a solution in polynomial

time O(tkr2) can be constructed by applying Dynamic-Bin algorithm separately
for each attribute. This is done as follows:

Consider the set of queries qi obtained from Q by taking from each query
q ∈ Q only its range relating to attribute Ai (i.e, qi =

⋃
q∈Q[liq, u

i
q)). As the total

amount of I/O cost in answering q is the sum of I/O costs incurred by answering
each qi, Dynamic-Bin algorithm is executed with constraint ki on the number
of bins and considering only queries in qi.

The SMOB problem for k = 1000 is illustrated in Figure 3 where each ta-
ble represents the output from applying the Dynamic-Bin algorithm on a single
attribute and selecting some ki for each attribute. The main problem is deter-
mining the values of the kis. Unfortunately this turns out to be an NP-hard
problem as shown in the next theorem.

Theorem 1. The SMOB is NP-Hard even if all queries in Q have equal prob-
ability and each query includes a range for only one attribute.

Proof. (Outline): The reduction is from a known NP-hard problem called “the
multiple-choice knapsack problem” (MCKP) [7]. In the MCKP we are given t
groups, each consisting of multiple items where item j in group i has value vi,j

and cost ci,j . It is required to select exactly one item from each group such that
the total cost of selected items does not exceed a budget B and their total value
is maximized. Given an instance of MCKP we can transform it to an instance of
SMOB where each attribute represents a group with k members, each member
represents a choice for the number of bins for that attribute. The values and
costs in MCKP can be transformed to candidate check costs and the number of
bins used respectively. Solving SMOB with total budget k represents a solution
to the MCKP instance. 2

Several effective heuristic strategies are known for obtaining sub-optimal solu-
tions for the MCKP problem that are also applicable to the SMOB problem.



In this paper we will not study this problem any further but rather focus on
efficient strategies of evaluating queries for a given binning selection.

5 Query Evaluation with Attribute Reordering

An efficient query evaluation strategy is discussed in [11]. It attempts to reduce
the amount of I/O costs by performing a candidate check algorithm in t phases.
The idea is to reduce the I/O costs of accessing edge bins by only retrieving
records that survived previous phases. In phase 1 we perform a candidate check
for range r1 and produce the bitmap b(r1). In phase 2 we first perform a Boolean
AND between b(r1) and all potential bitmaps corresponding to the range r2. We
therefore reduce the number of “1-bits” in the edge bins corresponding to r2. In
general, in phase i + 1 we perform edge bin access only on values correspond-
ing to records that survived the candidate check in phase i. The next theorem
shows that the I/O cost of this strategy depends on the order of performing the
candidate check on the attributes.

Theorem 2. Given a query q =
⋂t

i=1 ri assume the I/O cost involved in candi-
date checking for range ri is Wi and the fraction of records satisfying this range
is si (selectivity).

We assume that for all i , 0 < si < 1 thus omitting the trivial cases where for
some range ri either si = 0 (the query has empty results) or si = 1 (no candidate
check needed for ri as all values qualify). Let gi = Wi

1−si
, then the optimal order

of candidate check evaluation is in sorted non-decreasing order of gis.

Proof. (Outline): We will use the notation Sj =
∏j

i=1 si. We show that any
evaluation order that violates the above order cannot be optimal. Assume some
optimal evaluation order has cost Copt and renumber attributes according to
that order. The cost of this evaluation is

Copt = W1 + W2S1 + W3S2 + ...WjSj−1 + ... + WtSt−1

This cost expression assumes that in each phase the number of values in the edge
bins that need to be checked are reduced by the product of the selectivities from
previous phases and the number of disk accesses is approximately linear with the
number of records in a bin. Assume that for two consecutive candidate checks
in phases j and j + 1 the sorting order is not obeyed, i.e., gj > gj+1. We will
switch the evaluation order between these ranges to obtain another evaluation
order with cost C∗, the difference in costs is

C∗ − Copt

= (Wj+1Sj−1 + Wjsj+1Sj−1)− (WjSj−1 + Wj+1Sj)
= Wj+1Sj−1(1− sj)−WjSj−1(1− sj+1)
= Sj−1(1− sj)(1− sj+1)(gj+1 − gj) < 0

The inequality on the last line follows from the fact that each of the first three
terms in the product is positive and the last term is negative due to the assump-
tion that gj > gj+1. But this contradicts the optimality of Copt as we found an
order with a smaller cost. 2



In Section 6 we compare the optimal order of evaluation (based on non-
decreasing order of gis) to three other orders: alphabetic which does not take
into account any query or data characteristics (non-decreasing alphabetic or-
der by name of attribute), selectivity based only on selectivity of each range
(non-decreasing order of the sis) and candidates based only on the I/O cost for
candidate check (non-decreasing order of the Wis).

6 Experimental Results

In this section we present a representative subset of our experiments to evaluate
the efficiency of our new binning and query evaluation strategies. We generated
100 million data points that follow a Zipf distribution with the parameters z=0,
0.5, 1 and 2. For all our experiments we used equality encoded bitmap indices
and WAH compression [12]. We also generated 5,000 random range queries. The
goal is to compare the following three different binning strategies: a) Equi-width
binning: Each bin has the same width. b) Equi-depth binning: The bin boundaries
are chosen in such a way that all bins have roughly the same number of entries. c)
Opt-binning: The bin boundaries are chosen based on Dynamic-Bin introduced
in Section 3.

Fig. 4. I/O costs of candidate check per attribute.



Figure 4 shows the average number of candidates per attribute for the 5000
4-dimensional queries. Note that for each attribute the shape of the Zipf dis-
tribution is different. As we can see, in all cases, Opt-binning outperforms the
other two binning strategies. In addition, the relative efficiency of Opt-binning
increases with more skewness in the data.

The average number of candidates for all four attributes combined is given
in Figure 5. We also show the impact of query reordering as discussed in Section
5. We can observe that ordering according to the number of candidates in the
edge bins is quite competetive with the optimal reordering strategy for this
data. Again we can observe that Opt-binning outperforms the other two binning
strategies by a factor of 3 for uniform queries. For left-skewed queries the I/O
costs are improved by nearly a factor of 4.

Fig. 5. Combined I/O costs of 4-dimensional queries with different distributions..

7 Conclusions and Future Work

For high-cardinality attributes bitmap indices with binning have a lower stor-
age and computational complexity than simple bitmap indices. However, this
advantage comes with an additional cost, the so-called candidate check costs for
verifying parts of the data against the query constraints. In this paper we stud-
ied issues related to optimizing multi-dimensional queries on bitmap indices with
bins. We introduced an optimization strategy based on attribute value distribu-
tion, query distribution as well as query selectivity with respect to each dimen-
sion. Our experimental results on data with various attribute value distributions
and query distributions demonstrated that our new algorithm significantly im-
proves the candidate check costs when compared to traditional strategies by at
least a factor of 3. We also showed that the efficiency of our algorithm is more
significant for highly-skewed data and queries.

In the future we plan to analyze several heuristics that efficiently determine
the optimal number of bins for multiple attribute datasets. This problem is very



important for multi-attribute queries where each attribute has different charac-
teristics in terms of data distribution, selectivity and probability of occurring in
a query expression.
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